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Abstract

The introduction of high-speed circuits to realize an arithmetic function f as a piecewise
linear approximation has created a need to understand how the number of segments
depends on the interval a ≤ x < b and the desired approximation error ε. For the case
of optimum non-uniform segments, we show that the number of segments is given as
s(ε) ∼ c√

ε
, (ε → 0), where c = 1

4

∫ b

a

√
|f ′′(x)|dx. We also show that, if the segments have

the same width (to reduce circuit complexity), then the number of segments is given by

s(ε) ∼ c√
ε
,(ε → 0), where c =

(b−a)
√
|f ′′|max

4
.

Keywords: piecewise linear approximation; numeric function generators

1. Introduction

A numeric function generator (NFG) is a logic circuit that realizes an arithmetic
function like f(x) = sin x over some specified interval a ≤ x < b. We consider the numeric
function generator shown in Fig. 1. This architecture realizes a given function as a set
of segments or pieces, where f is approximated in each segment by the linear equation
f(x) ≈ c1x + c0. The values of c1 and c0 are stored in the Coefficients Memory shown in
Fig. 1 in a location whose address is specified by the Segment Index Encoder. In designing
this circuit, one partitions the interval a ≤ x < b into segments, where the coefficients
c1 and c0 are the same in each segment and approximate the function to within some
specified error. It is known [9] that the Segment Index Encoder is tractably realized.

This circuit is said to realize a non-uniform segmentation because, in general, the
segments have different widths. Indeed, we will choose the segment widths as large as pos-
sible so that the approximation is still less than or equal to within the given approximation
error. In this way, we produce a segmentation that has a few segments as possible.

∗Corresponding author at: Department of Electrical and Computer Engineering, Naval Postgraduate
School, Code EC/Bu, Monterey, CA, 93943-5121.

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
MAY 2010 2. REPORT TYPE 

3. DATES COVERED 
    

4. TITLE AND SUBTITLE 
On the number of segments needed in a piecewise linear approximation 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School,Department of Electrical and Computer 
Engineering,Monterey,CA,93943 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
The introduction of high-speed circuits to realize an arithmetic function f as a piecewise linear
approximation has created a need to understand how the number of segments depends on the interval a ? x
< b and the desired approximation error ". For the case of optimum non-uniform segments, we show that
the number of segments is given as s(") ? pc " , (" ! 0), where c = 1 4 R b a p jf00(x)jdx. We also show that,
if the segments have the same width (to reduce circuit complexity), then the number of segments is given by
s(") ? pc " ,(" ! 0), where c = (b?a) p jf00jmax 4 . 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

13 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



2 C. Frenzen, T. Sasao, and J. T. Butler

Segment
Index
Encoder

Coefficients
Memory

×
+

x

c1 c1x

c0
f(x)

Figure 1. Architecture of a Numerical Function Generator Using Piecewise Linear Ap-
proximation and Non-Uniform Segmentation.

In contrast, we also consider a uniform segmentation. In this case, all segments
have equal width. If the segment widths are 2m, then the segment index encoder can be
removed and the higher order n−m bits used to drive the address of the Segment Index
Encoder, where n is the number of bits to encode x. In this case, the circuit is likely to
be smaller and faster.

Up to this point, we have not had an analytical tool to predict the size of the Coefficients
Memory as a function of the function realized, the domain, and the required approximation
error. That is, our understanding of its size has only been through experimental results;
i.e. specific implementations [5,7–10]. We derive an expression for the number of segments
(size of the Coefficients Memory) for both the non-uniform and the uniform case.

2. Non-Uniform Approximation With Unrestricted Slope

Let f be a three times continuously differentiable function defined on the domain [a, b].
In the case of unrestricted slope, our algorithm proceeds by generating a segmentation
{x0, x1, . . . , xn} of [a, b] with the property that, in each of the n segments [xi, xi+1], i =
0, . . . , n− 1, the chord between xi and xi+1 produces a linear approximation (c1x + c0) to
f within a previously specified approximation error ε :

|f(x)− c1x− c0| ≤ ε, x ∈ [xi, xi+1].

In the example of the sin(πx) function, experimental results show that, for a specified
approximation error ε, the segmentation algorithm, in the case of unrestricted slope,
determines a number of segments s that is proportional to 1/

√
ε. We now show that this

is a general result for a large set of functions.
Specifically, we give an asymptotic approximation for the number of segments s(ε)

needed to approximate a given function f(x) to within a given approximation error ε.
We say that t(ε) is an asymptotic approximation to s(ε), expressed as s(ε) ∼ t(ε), if
limε→0+ s(ε)/t(ε) = 1. In our use of this, s(ε) is the exact number of segments, while t(ε)
is an approximation to s(ε), which has a simple form. Intuitively, we expect the number
of segments to increase as the approximation error ε decreases. We seek to determine
this relationship, since it provides insight into how hardware complexity depends on the
approximation error.

In what follows, we divide the domain [a, b] into two sets depending of the value of
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f ′′(x). Let

Aε = {x ∈ [a, b] : |f ′′(x)| ≤ √
ε} and (1)

Bε = {x ∈ [a, b] : |f ′′(x)| > √
ε}, (2)

where ε > 0. Note that 1) Aε is a closed set; 2) Bε is an open set, 3) Aε

⋂
Bε = ∅; and 4)

Aε

⋃
Bε = [a, b].

Theorem 1. Consider a piecewise linear approximation of f on the domain [a, b] that
is accurate to within ε, using a piecewise linear segmentation. Let f be three times con-
tinuously differentiable on [a, b]. Then, s(ε), the number of segments in an optimum
segmentation of [a, b], satisfies the following asymptotic approximation:

s(ε) ∼ c√
ε

, (ε → 0), (3)

where

c =
1

4

∫ b

a

√
|f ′′(x)|dx. (4)

Proof See Appendix.
For example, if we take f(x) = sin πx on [0, 1

2
], we find

s(ε) ∼ π
∫ 1/2

0

√
sin πx dx

4
√

ε
. (5)

Using MAPLE to numerically evaluate the integral in (5) yields

s(ε) ∼ 0.2995√
ε

.

The following corollary of Theorem 1 relaxes the conditions on the end points of the
domain.

Corollary 1. Let f be three times continuously differentiable on the open interval (a, b)
and

√
f ′′ be improperly Riemann integrable2 on the closed interval [a, b], with integrable

singularities at the endpoints a or b. Then, s(ε), the number of segments in an optimum
segmentation of [a, b], satisfies the following asymptotic approximation:

s(ε) ∼ c√
ε

, (ε → 0), (6)

where

c =
1

4

∫ b

a

√
|f ′′(x)|dx. (7)

2The function f is improperly Riemann integrable on [a, b] if f is Riemann integrable on every open
subinterval (c, d) of [a, b], and the function f becomes unbounded in neighborhoods of a or b, and
limc→a,d→b

∫ d

c
f(x)dx exists.
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The significance of Corollary 1 is that we can obtain an asymptotic approximation to
the number of segments even when the function has singularities at the endpoints of the
interval over which the approximation occurs.

Table 1 shows the asymptotic approximations to the number of segments for 14 func-
tions. These values were derived from Theorem 1 and Corollary 1, and are shown in the
third column labeled Non-uniform. The two functions,

√
x and the entropy function,

−x log2 x− (1− x) log2(1− x), on which we applied Corollary 1, are among the functions
with the largest number of segments. As we will see later, these functions are especially
expensive to approximate using uniform segmentation. The fourth column labeled Uni-
form will be discussed in Section 3. The fifth (rightmost) column, labeled Non-Uni/Uni,
shows the ratio of the number of non-uniform segments needed compared to the number
of uniform segments needed as a percentage, when the specified approximation error ε is
small. For example, for 2x, non-uniform segmentation uses 84% of the segments needed
by uniform segmentation. For

√
x and −(x log2 x + (1− x) log2(1− x)), the fifth column

contains (0%), which shows that the ratio of segments in non-uniform segmentation is
vanishingly small compared to the number of segments needed in the uniform approxima-
tion as ε → 0. We discuss the derivations for the number of segments needed for uniform
segmentation in Section 3.

Table 1
Number of Segments for Non-Uniform and Uniform Segmentations

Function Domain of Non-Uniform Uniform Non-Uni
f(x) x s ∼ s ∼ /Uni =

2x [0, 1) 0.2071√
ε

0.2451√
ε

= ln 2√
8
√

ε
84%

1/x [1, 2) 0.2071√
ε

0.3536√
ε

= 1√
8
√

ε
59%√

x [0, 2) 0.5946√
ε

0.0313
ε2 = 1

32ε2 (0%)

1/
√

x [1, 2) 0.1378√
ε

0.2165√
ε

=
√

3
8
√

ε
64%

log2(x) [1, 2) 0.2081√
ε

0.3003√
ε

= 1
4
√

ln 2
√

ε
69%

ln x [1, 2) 0.1733√
ε

0.2500√
ε

= 1
4
√

ε
69%

sin(πx) [0, 1
2
) 0.2995√

ε
0.3927√

ε
= π

8
√

ε
76%

cos(πx) (0, 1
2
) 0.2995√

ε
0.3927√

ε
= π

8
√

ε
76%

tan(πx) [0, 1
4
) 0.2005√

ε
0.3927√

ε
= π

8
√

ε
51%

√
−ln(x) [ 1

256
, 1

4
) 0.5961√

ε
6.9226√

ε
=

15 3
4

√
(ln 256)−

1
2− 1

2
(ln 256)−

3
2√

2
√

ε
9%

tan2(πx) + 1 [0, 1
4
) 0.4200√

ε
0.7854√

ε
= π

4
√

ε
53%

−(x log2 x+ (0, 1) 0.9434√
ε

0.2654
ε

= 1
2e ln 2 ε

(0%)

(1−x) log2(1−x))
1

1+e−x [0, 1) 0.0550√
ε

0.0754√
ε

=
√

e1+e−1

e1+2+e−1
1

4
√

ε
73%

1√
2π

e
−x2

2 [0,
√

2] 0.1452√
ε

0.2233√
ε

=
√

2
4(2π)1/4

√
ε

65%
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3. Uniform Approximation With Unrestricted Slope

In this part, we consider two ways to determine the number of segments needed in the
case when a completely free choice of slope is used with uniform segmentation. The first
approach is a direct computation, which can be applied to all functions considered in this
paper, and the second is an asymptotic approximation that applies to a majority of the
functions.

The first approach is illustrated as follows. Consider a uniform segmentation of a
function f(x) from x = a to x = b. Consider a segment beginning at x = α and ending
at x = β, where α < β near a point in the domain [a, b], where |f ′′(x)| is maximum. It
is at this point that the maximum error between the function and its linear piecewise
approximation occurs. That is, if we choose the segment width to be small enough at this
point so that the error is equal to the specified approximation error ε, then that small
a width for all segments will be sufficient to achieve a maximum error ε in all segments.
Therefore, the number of segments s, to achieve an approximation error with uniform
segmentation is

s =

⌈
b− a

β − α

⌉
. (8)

Consider a piecewise linear approximation, fpl(x) to f(x) of the form fpl(x) = (f(β)−
f(α))x−α

β−α
+ f(α). The error due to the approximation can be viewed as |f(x)− fpl|. Note

that |f(x) − fpl| is 0 at x = α and at x = β. However, we will approximate f(x) in the
domain [α, β] by adding a constant to fpl so that the maximum error in the domain [α, β]
is no greater than 1

2
|f(x)− fpl|. As a result, the error function e(x) for the domain [α, β]

is 1
2
(|f(x)− fpl|). Substituting for fpl, yields

e(x) =
1

2

[
[f(x)− f(α)]− [f(β)− f(α)]

x− α

β − α

]
. (9)

To illustrate, consider the function f(x) =
√

x in the domain [0,2]. f ′′(x) becomes
unbounded near x = 0. Thus, we choose α = 0, and from (9), we have

e(x) =
1

2

[√
x−

√
β

x

β

]
.

By differentiating e(x) with respect to x, we find that the maximum error occurs at

x = β
4
. At this value, the maximum e, emax is

√
β

8
. We choose this value to be ε. That is,

emax = ε, and, so
√

β
8

= ε. Substituting this into (8) yields

s =

⌈
1

32ε2

⌉
. (10)
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Thus, as ε decreases (improves), the number of segments needed for a uniform seg-
mentation increases as the inverse of the square of ε. This results from the fact that f ′′

becomes unbounded near the endpoint 0. A similar analysis can be applied to the entropy
function, and in fact can be generalized.

The number of segments needed for uniform segmentation can be computed for all of
the target functions. Column 4 of Table 1, labeled Uniform shows the expressions of the
number of segments required in a uniform approximation for the various functions. For
all but two of the functions, the expressions have the form c√

ε
, which are the same form

as the asymptotic approximation for the number of segments required in a non-uniform
segmentation. For two functions,

√
x and −(x log2 x+(1−x) log2(1−x)), the asymptotic

approximation for the number of segments is c
ε2 and c

ε
, respectively. The right column of

Table 1, labeled Non-Uni/Uni shows the ratio of segments required in a non-uniform
segmentation to the number of segments required in a uniform segmentation (expressed as
a percentage). For some functions, like 2x, sin(πx), and cos(πx), this is high, 84%, 76%,
and 76%, respectively. For such functions, there is a small penalty for using a uniform
segmentation. For other functions, like

√
− ln(x), this percentage is low, 9%, and the

penalty is high. A similar statement is true of
√

x and −(x log2 x + (1 − x) log2(1− x)),
where the percentage number of segments is expressed as (0%).

It is interesting that, when the domain for the
√

x function is reduced to [1
2
, 2], the

number of segments is given by s ∼ 0.3153√
ε

.
The second approach to determining the number of segments requires the second deriva-

tive f ′′(x) to be bounded over the domain of approximation. We have

Theorem 2. Consider a piecewise linear approximation of a function f(x) on the domain
[a, b] with a specified approximation error ε or less using uniform segmentation. Let the
absolute value of the second derivative |f ′′(x)| of f(x) on the domain [a, b] be finite. Then,
the number of segments s is

s ∼ c√
ε
, (11)

where

c =
(b− a)

√
|f ′′|max

4
, (12)

where |f ′′|max is the maximum of the absolute value of f ′′(x) over the domain [a, b].

Proof See Appendix.
The right column of Table 1 shows the results of Theorem 2. Specifically, all functions

in this table except
√

x and −(log2x + (1 − x) log2(1 − x)) satisfy the restriction that
|f ′′(x)| is finite. For example, for sin(πx), |f ′′(x)|max = π2. Therefore, for this function,
(12) yields s ∼ π

8
√

ε
, which agrees with Table 1.

4. Concluding Remarks

As a result of our analysis, we have an understanding of how the hardware complexity,
as measured by the number of segments, depends on the specified precision ε. Our results
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also show that, for some functions, it is reasonable to use uniform segmentation, thus
eliminating the segment index encoder. For such functions, our results validate the past
research on uniform segmentation. For example, with the sin(πx) and cos(πx) functions
approximated using unrestricted slope, 0.3927√

ε
segments are needed for uniform segmenta-

tion, while no more than 0.2995√
ε

segments are needed for non-uniform segmentation. This

is about 31% more segments. The penalty is substantial, but if memory is inexpensive,
and speed is essential, this may be a welcome tradeoff.

Table 2 shows the number of segments needed in the case of non-uniform and uniform
segmentation for functions approximated using unrestricted slope as calculated in Sections
4 and 5, respectively. Table 2 shows the number of segments needed for four precisions,
8, 16, 32, and 64 bits 3.

Table 2
Number of Segments for Non-Uniform and Uniform Segmentation For Four Precisions, 8,
16, 24, and 32 Bits.

Function Inter- Non-Uniform Uniform
f(x) val x 8 16 32 64 8 16 32 64
2x [0, 1) 4 75 19,195 1.26× 109 6 89 22,717 1.49× 109

1/x [1, 2) 4 75 19,195 1.26× 109 8 128 32,773 2.15× 109

√
x [0, 2) 10 216 55,109 3.61× 109 8,206 5.38× 108 2.31× 1018 4.26× 1037

1/
√

x [1, 2) 3 50 12,772 8.37× 108 5 79 20,066 1.32× 109

log2(x) [1, 2) 4 75 19,228 1.26× 109 7 109 27,833 1.82× 109

ln x [1, 2) 3 63 16,062 1.05× 109 6 91 23,171 1.52× 109

sin(πx) [0, 1
2
) 5 109 27,759 1.82× 109 9 143 36,397 2.39× 109

cos(πx) (0, 1
2
) 5 109 27,759 1.82× 109 9 143 36,397 2.39× 109

tan(πx) [0, 1
4
) 4 73 18,583 1.22× 109 9 143 36,397 2.39× 109

√
−ln(x) [ 1

256
, 1

4
) 10 216 55,248 3.62× 109 157 2,507 641,600 4.20× 1010

tan2(πx) + 1 [0, 1
4
) 7 153 38,927 2.55× 109 18 285 72,793 4.77× 109

−(x log2 x+ (0, 1) 16 342 87,437 5.73× 109 136 34,787 2.28× 109 9.79× 1018

(1−x) log2(1−x))
1

1+e−x [0, 1) 1 20 5,096 3.34× 108 2 28 6,989 4.58× 108

1√
2π

e
−x2

2 [0,
√

2] 3 53 13,458 8.82× 108 6 81 20,696 1.36× 109

From Table 2, we can make conclusions about the feasibility of realizing the various
functions. Specifically, we can see that for 64 bit precision, very large memory size is
needed in all cases. For 32 bit precision, both uniform and non-uniform segmentation
yield feasible realizations, except for

√
x and −(x log2 x + (1− x) log2(1− x)). Also, the

memory required to realize
√
− ln(x) is quite large compared to that required for non-

uniform segmentation. For 16 bit precision, all realizations of the functions are feasible,
except for

√
x using uniform segmentation. For 8 bit precision, all realizations are feasible

using either non-uniform and uniform segmentation. In general, for many functions,

3Assuming that the most significant bit is the coefficient of 2−1, we choose the error, ε, to be one-half
of the value of the least significant bit. For example, for 8 bit precision, we choose the error to be 2−9.
We substitute this for ε in the equations for the number of segments for non-uniform segmentation and
uniform segmentation.
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uniform segmentation is good, especially when the cost of memory is low.
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5. APPENDIX

In the following theorem, we make the following reasonable assumptions.
Assumption 1: As ε → 0, the measure of Aε → 0.
Assumption 2: The open set Bε is a finite union of open intervals.

Given these assumptions, we now state
Theorem 1 Consider a piecewise linear approximation of f on the domain [a, b] that is
accurate to within ε, using a piecewise linear segmentation. Let f be three times con-
tinuously differentiable on [a, b]. Then, s(ε), the number of segments in an optimum
segmentation of [a, b], satisfies the following asymptotic approximation:

s(ε) ∼ c√
ε

, (ε → 0),

where

c =
1

4

∫ b

a

√
|f ′′(x)|dx.

Proof Given ε > 0, divide the domain [a, b] into segments with end points {x0, x1, . . . , xs},
where x0 = a and xs = b. Assume {x0, x1, . . . , xs} has the fewest segments such that all
segments have an approximation error no greater than ε. Thus, for any segment, if we
set

Li(x) = f(x)−
[
f(xi+1)− f(xi)

xi+1 − xi

(x− xi) + f(xi)

]
, (13)

then

|Li(x)| ≤ 2ε,

for xi ≤ x ≤ xi+1, where i = 0, 1, . . . , s− 1. Without loss of generality, since the segmen-
tation is optimal, we can assume that, for all but perhaps one segment, there exists an x∗i
in (xi, xi+1), for which |Li(x

∗
i )| = 2ε, for i = 0, 1, . . . , s− 1. Now let

x
(i)
mid =

xi + xi+1

2

and
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∆i = xi+1 − xi

be respectively, the midpoint and length of the segment [xi, xi+1] so that

xi = x
(i)
mid −

∆i

2
, (14)

xi+1 = x
(i)
mid +

∆i

2
, (15)

and, for x ∈ [xi, xi+1],

x = x
(i)
mid − αi(x)

∆i

2
,

where −1 ≤ αi(x) ≤ 1.
Apply Taylor’s approximation to the terms in Li in (13) . This yields, after some

algebra,

Li(x) =
1

2
f ′′(x(i)

mid)
∆2

i

4
(α2

i − 1) + O(∆3
i ).

Hence,

|Li(x)| = ∆2
i

8
|f ′′(x(i)

mid)|
(|α2

i − 1| + O(∆i)
)
,

for i = 0, 1, . . . s− 1 and xi ≤ x ≤ xi+1. Since −1 ≤ αi(x) ≤ 1,

max
αi(x)∈[−1,1]

|αi(x)2 − 1| = 1.

Therefore,

2ε = max
[xi,xi+1]

|Li(x)| = ∆2
i

8
|f ′′(x(i)

mid)| (1 + O(∆i)) . (16)

Take the square root of both sides and sum over i from 0 to s− 1:

s−1∑
i=0

√
2ε =

s−1∑
i=0

∆i√
8

√
|f ′′(x(i)

mid)| (1 + O(∆i)) .

We now recognize that x
(i)
mid must lie in either the set Aε or the set Bε, where

Aε = {x ∈ [a, b] : |f ′′(x)| ≤ √
ε} and (17)

Bε = {x ∈ [a, b] : |f ′′(x)| > √
ε}, (18)
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for ε > 0.
Thus, we split the sum accordingly:

s−1∑
i=0

√
2ε =

∑

x
(i)
mid∈Aε

∆i√
8

√
|f ′′(x(i)

mid)| (1 + O(∆i))

+
∑

x
(i)
mid∈Bε

∆i√
8

√
|f ′′(x(i)

mid)| (1 + O(∆i)) . (19)

The first sum on the right in (19) is small, O(ε1/4). Also, since

|f ′′(x(i)
mid)| >

√
ε

for xi
mid ∈ Bε, (16) implies

2ε ≥ ∆2
i

8
|f ′′(x(i)

mid)|(1 + O(∆i)) >
∆2

i

8

√
ε(1 + O(∆i)). (20)

It follows from (20) that ∆2
i = O(

√
ε), and so ∆i → 0 as ε → 0. Now, (19) can be written

as

s(ε)
√

2ε = O(ε1/4) +
∑

x
(i)
mid∈Bε

∆i√
8

√
|f ′′(x(i)

mid)| (1 + O(∆i)) . (21)

Since ∆i → 0 as ε → 0, Aε

⋃
Bε = [a, b], and the measure of Aε tends to 0 as ε → 0, it

follows that the number of terms in the sum in (21) goes to infinity as ε → 0, and so, by
our previous assumptions, we can approximate the sum in (21) as a Riemann integral:

∑

x
(i)
mid∈Bε

∆i√
8

√
|f ′′(x(i)

mid)| (1 + O(∆i)) =

1√
8

∫

Bε

√
|f ′′(x)|dx (1 + o(1)).

Thus,

s(ε)
√

2ε = O(ε1/4) +
1√
8

∫

Bε

√
|f ′′(x)|dx (1 + o(1))

and

s(ε) = O(ε−1/4) +
1

4
√

ε

∫

Bε

√
|f ′′(x)|dx (1 + o(1)).



Number of pieces in a piecewise approximation 11

Since the measure of the set Aε → 0 as ε → 0, a combination of the above results gives

s(ε) ∼ c√
ε

, (ε → 0),

where

c =
1

4

∫ b

a

√
|f ′′(x)|dx.

Theorem 2 Consider a piecewise linear approximation of a function f(x) on the domain
[a, b] with a specified approximation error ε or less using uniform segmentation. Let the
absolute value of the second derivative |f ′′(x)| of f(x) on the domain [a, b] be bounded.
Then, the number of segments s is

s ∼ c√
ε
, (22)

where

c =
(b− a)

√
|f ′′|max

4
, (23)

where |f ′′|max is the maximum of the absolute value of f ′′(x) over the domain [a, b].
Proof For any segment in a uniform segmentation of f(x), the difference between the
exact value of f and its linear piecewise approximation is

Li(x) = f(x)−
[
f(xi+1)− f(xi)

xi+1 − xi

(x− xi) + f(xi)

]
. (24)

We require that

|Li(x)| ≤ 2ε. (25)

By a process similar to that used in Theorem 1,

Li(x) =
1

2
f ′′(x(i)

mid)
∆2

i

4
(α2

i (x)− 1) + O(∆2
i ). (26)

Let |f ′′| assume its maximum in [xi, xi+1] at x∗i . Since x
(i)
mid = x∗i + O(∆i), we have

|f ′′(x(i)
mid)| = |f ′′(x∗i )|+ O(∆i). (27)

(25) and (26) imply that
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1

2

[
max

x∈[xi,xi+1]
|f ′′(x)|

]
∆2

i

4
|α2

i (x)− 1|+ O(∆3
i ) ≤ 2ε. (28)

(28) can be written as

1

16ε

[
max

x∈[xi,xi+1]
|f ′′(x)|

]
|α2

i (x)− 1|+ O

(
∆i

ε

)
≤ 1

∆2
i

. (29)

Now, as in Theorem 1, ∆i

ε
= O(ε−1/2), so that (29) can be written as

∆2
i ≤

1
1

16ε

[
maxx∈[xi,xi+1] |f ′′(x)|] |α2

i (x)− 1|+ O (ε−1/2)

or

∆2
i ≤

16ε[
maxx∈[xi,xi+1] |f ′′(x)|] |α2

i (x)− 1|+ O (ε1/2)
. (30)

Now, the right side of (30) is an upper bound for ∆2
i , where ∆i, i = 0, 1, . . . , s − 1 are

s segments covering [a, b], in each of which |Li(x)| ≤ 2ε, xi ≤ x ≤ xi+1. We want a
uniform segmentation of [a, b] with the minimum ∆i. So, we choose αi = 0 in (30),
replace

[
maxx∈[xi,xi+1] |f ′′(x)|] by the maximum of |f ′′(x)| over the entire domain, and

take the square root. We use the equality sign in (30) to conclude that

∆i =
4
√

ε√
maxx∈[a,b] |f ′′(x)|(1 + O(ε1/2))

.

Thus,

s(ε) =
b− a

∆i

=
d(ε)√

ε
, (31)

where

d(ε) =

√
maxx∈[a,b] |f ′′(x)| (b− a) (1 + O(ε1/2))

4
.

Since

lim
ε→0

d(ε) = d =

√
maxx∈[a,b] |f ′′(x)| (b− a)

4
,

we see that (31) implies that, for a uniform optimal segmentation

s(ε) ∼ d√
ε

(ε → 0). (32)
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